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I. INTRODUCTION

The Cosmic Microwave Background (CMB) radiation promises to be a powerful tool in

understanding cosmology. The exact form of the anisotropy in the CMB depends on a host

of cosmological parameters, such as the density 
0, Hubble constant H0, baryon density 
B,

and so forth. A great deal has been written about using the CMB to constrain cosmological

parameters [1{6]. This paper is an extension of earlier work [7], which discussed CMB pa-

rameter estimation from the point of view of parameters relevant for distinguishing among

models of cosmological ination. Ination [8] has become the paradigm for understanding

the initial conditions for structure formation and for CMB anisotropy. In the inationary

picture, primordial density and gravity-wave uctuations are created from quantum uctu-

ations \redshifted" out of the horizon during an early period of superluminal expansion of

the universe. The density (or scalar) uctuations form the seeds for structure formation,

and along with the gravity-wave (or tensor) uctuations are also responsible for the ob-

served temperature uctuations in the CMB. Most (but not all) ination models predict a

geometrically at universe and a nearly scale-invariant spectrum of density perturbations.

Within this general framework, di�erent ination models make di�erent predictions for the

amplitudes and spectral indices of tensor and scalar uctuations. These parameters can be

constrained through observation of CMB temperature anisotropy, and it will be possible

with upcoming CMB measurements to falsify models of ination.

Here we consider CMB polarization as well as temperature anisotropy as a tool for

constraining ination, using NASA's MAP satellite [9] and the ESA's Planck Surveyor [10]

as examples of the accuracy that will be achievable in the next few years. Polarization of the

CMB is a generic prediction of any model in which the CMB is created by primordial density

uctuations, so that an experiment of su�cient sensitivity will almost certainly detect it.

(For a pedagogical review of CMB polarization, see Ref. [11]. More formal treatments can

be found in Refs. [12,14{16]. Refs. [17{19] discuss issues speci�cally related to ination.)

Observation of CMB polarization has the potential to provide us with a great deal more
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information than can be obtained from observation of temperature alone, and therefore

has the potential to greatly strengthen constraints on parameters. The purpose of this

paper is to examine quantitatively the improvements in parameter estimation that can be

gained through observation of CMB polarization, with emphasis on parameters relevant

for distinguishing among the \zoo" of currently popular ination models. We come to

two main conclusions. First, cosmic variance in temperature-only measurements severely

limits the ability to detect a small tensor/scalar ratio, and measurement of polarization

allows signi�cant improvement in the ability to study models that predict very small tensor

contributions to the CMB. Second, reionization of the universe can signi�cantly degrade

the sensitivity of parameter estimation if temperature anisotropy alone is measured, but

measurement of polarization e�ectively removes the parameter degeneracy between tensor

amplitude and reionization optical depth.

The structure of this paper is as follows: Section II contains a brief review of cosmological

ination and the generation of perturbations. Section III discusses uctuations in the CMB

and how to quantify the expected measurement errors for planned experiments. Section IV

contains a description of a set of generic ination models and their predictions for the form

of the CMB anisotropies. Section V contains results and conclusions.

II. INFLATION IN SCALAR FIELD THEORIES

In this section, we quickly review scalar �eld models of inationary cosmology, and

explain how we relate model parameters to observable quantities. Ination in its most general

sense can be de�ned to be a period of accelerating cosmological expansion, during which the

universe evolves toward homogeneity and atness. This acceleration is typically a result of

the universe being dominated by vacuum energy, with equation of state p ' ��. Within this

broad framework, many speci�c models for ination have been proposed. We limit ourselves

here to models with \normal" gravity (i.e., general relativity) and a single order parameter

for the vacuum, described by a slowly rolling scalar �eld � (the inaton). These assumptions
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are not overly restrictive { most widely studied ination models fall within this category,

including Linde's \chaotic" ination scenario [22], ination from pseudo Nambu-Goldstone

bosons (\natural" ination [23]), dilaton-like models involving exponential potentials (power-

law ination), hybrid ination [24{26], and so forth. Other models, such as Starobinsky's R2

model and versions of extended ination, can, through a suitable transformation, be viewed

in terms of equivalent single-�eld models. Take a Lagrangian with a single e�ective degree

of freedom �,

L =
1

2
g��@

��@��� V (�) ; (1)

with a metric of the at Robertson-Walker form

ds2 = g��dx
�dx� = dt2 � a2 (t) dx2: (2)

The scale factor a (t) parameterizes the expansion of the universe, and the expansion rate,

or Hubble parameter H is de�ned to be

H �
�
_a

a

�
: (3)

For �eld modes homogeneous on scales comparable to the horizon size dH � H�1, the stress-

energy of the scalar �eld \matter" is of the form of a perfect uid, T�� = diag (�;�p;�p;�p),
with

� =
1

2
_�2 + V (�) ;

p =
1

2
_�2 � V (�) : (4)

If the stress-energy of the universe is dominated by the scalar �eld, the Einstein Field

equations G�� =
�
8�=M2

P l

�
T�� for the evolution of the metric reduce to

H2=
8�

3M2
P l

�
1

2
_�2 + V (�)

�
;�

�a

a

�
=

8�

3M2
P l

h
V (�)� _�2

i
: (5)
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Here MP l = G�1=2 ' 1019 GeV is the Planck mass. Ination is de�ned to be a period of

accelerated expansion, �a > 0. The evolution of the scale factor can be given in terms of the

Hubble parameter H as

a / exp

�Z
H dt

�
� eN ; (6)

where the number of e-folds N is de�ned to be

N �
Z
H dt: (7)

During ination H (and therefore the horizon size dH ' H�1) is nearly constant, and the

expansion of the universe is quasi-exponential. This results in the curious behavior that the

coordinate system is expanding faster than the light traveling in it, and comoving length

scales rapidly increase in size relative to the horizon distance. Regions initially in causal

contact are \redshifted" to large, non-causal scales, explaining the observed isotropy of the

cosmic microwave background (CMB) on large angular scales. This is also important for

the generation of metric uctuations in ination, discussed below. Finally, a universe which

starts out with a nonzero curvature evolves rapidly during ination toward zero curvature

and a at Robertson-Walker metric (2), which, for simplicity, we have assumed from the

beginning.

Stress-energy conservation gives the equation of motion of the scalar �eld,

��+ 3H _�+ V 0 (�) = 0: (8)

The slow-roll approximation [27,28] is the assumption that the evolution of the �eld is

dominated by drag from the cosmological expansion, so that �� ' 0 and

_� ' � V 0

3H
: (9)

The equation of state of the scalar �eld is dominated by the potential, so that p ' ��, and
the expansion rate is approximately

H '
s

8�

3M2
P l

V (�): (10)
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The slow-roll approximation is consistent if both the slope and curvature of the potential

are small, V 0; V 00 � V . This condition is conventionally expressed in terms of the slow-roll

parameters � and �,

� � M2
P l

4�

�
H 0 (�)

H (�)

�2

' M2
P l

16�

�
V 0 (�)

V (�)

�2

; (11)

and

� (�) � M2
P l

4�

�
H 00 (�)

H (�)

�
' M2

P l

8�

"
V 00 (�)

V (�)
� 1

2

�
V 0 (�)

V (�)

�2
#
: (12)

Slow-roll is then a consistent approximation for �; � � 1. The parameter � can in fact be

shown to directly parameterize the equation of state of the scalar �eld, p = �� (1� 2=3�),

so that the second equation in (5) can be written as�
�a

a

�
= H2 (1� �) : (13)

The condition for ination �a > 0 is then simply equivalent to � < 1. The number of e-folds

N of ination as the �eld evolves from �i to �f can also be expressed in terms of � as

N =
2
p
�

MP l

Z �f

�i

d�p
� (�)

: (14)

To create the observed atness and homogeneity of the universe, we require many e-folds of

ination, typically N ' 50. This �gure varies somewhat with the details of the model. A

comoving scale k crosses the horizon during ination N (k) e-folds from the end of ination,

where N (k) is given by [29]

N(k) = 62� ln
k

a0H0
� ln

1016GeV

V
1=4
k

+ ln
V

1=4
k

V
1=4
e

� 1

3
ln
Ve

1=4

�
1=4
RH

: (15)

Here Vk is the potential when the mode leaves the horizon, Ve is the potential at the end of

ination, and �RH is the energy density after reheating. Scales of order the current horizon

size exited the horizon at N (k) � 50� 70. In keeping with the goal of discussing the most

generic possible case, we will allow N to vary within the range 50 � N � 70 for any given

model. (In the similar analysis of Ref. [7], the number of e-folds was taken to be �xed at

N = 50.)
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Ination models not only explain the large-scale homogeneity of the universe, but also

provide a mechanism for explaining the observed level of inhomogeneity as well. During

ination, quantum uctuations on small scales are quickly redshifted to scales much larger

than the horizon size, where they are \frozen" as perturbations in the background metric

[30{33]. Metric perturbations at the surface of last scattering are observable as tempera-

ture anisotropy in the CMB, which was �rst detected by the Cosmic Background Explorer

(COBE) satellite [34{36]. The metric perturbations created during ination are of two

types: scalar, or curvature perturbations, which couple to the stress-energy of matter in the

universe and form the \seeds" for structure formation, and tensor, or gravitational wave

perturbations, which do not couple to matter. Both scalar and tensor perturbations con-

tribute to CMB anisotropy. Scalar uctuations can also be interpreted as uctuations in the

density of the matter in the universe. Scalar uctuations can be quantitatively characterized

by perturbations PR in the intrinsic curvature scalar [37{40]

P
1=2
R (k) =

1p
�

H

MP l

p
�

����
k�1=dH

: (16)

The uctuation power is in general a function of wavenumber k, and is evaluated when a

given mode crosses outside the horizon during ination, k�1 = dH . Outside the horizon,

modes do not evolve, so the amplitude of the mode when it crosses back inside the horizon

during a later radiation- or matter-dominated epoch is just its value when it left the horizon

during ination. The spectral index n is de�ned by assuming an approximately power-law

form for PR with

n� 1 � d ln (PR)

d ln (k)
; (17)

so that a scale-invariant spectrum, in which modes have constant amplitude at horizon

crossing, is characterized by n = 1. Variation of the spectral index with scale is second

order in slow-roll, so we will take n to be independent of scale, that is

dn

d lnk
' 0: (18)

6



The e�ect of scale dependence of the spectral index is considered in Ref. [19].

Instead of specifying the uctuation amplitude directly as a function of k, it is often

convenient to specify it as a function of the number of e-folds N before the end of ination

at which a mode crossed outside the horizon. Scales of interest for current measurements of

CMB anisotropy crossed outside the horizon at N ' 50 � 70, so that PR is conventionally

evaluated at PR (N = 50 � 70). Similarly, the power spectrum of tensor uctuation modes

is given by

P
1=2
T (kN) =

4p
�

H

MP l

����
N

: (19)

The ratio of tensor to scalar modes is then

PT
PR

= 16�; (20)

so that tensor modes are negligible for � � 1. Tensor and scalar modes both contribute to

CMB temperature anisotropy. If the contribution of tensor modes to the CMB anisotropy

can be neglected, normalization to the COBE four-year data gives [41,42] P
1=2
R = 4:8�10�5.

The tensor spectral index is

nT �
d ln (PT )

d ln (k)
= �2�: (21)

Note that nT is not an independent parameter, but is proportional to the tensor/scalar ratio,

nT = �1

8

PT
PR

; (22)

known as the consistency relation for ination. (This relation holds only for single-�eld

ination, and weakens to an inequality for ination involving multiple degrees of freedom

[43{45].) A given ination model can therefore be described to lowest order in slow roll by

three independent parameters, PR, PT , and n. Calculating the CMB uctuations from a

particular inationary model reduces to the following basic steps: (1) from the potential,

calculate � and �. (2) From �, calculate N as a function of the �eld �. (3) Invert N (�) to

�nd �N . (4) Calculate PR, n, and PT as functions of �, and evaluate at � = �N , where in is

in the range N = 50 � 70. For the remainder of the paper, all parameters are assumed to

be evaluated at � = �N .
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III. STATISTICS OF CMB MEASUREMENTS: TEMPERATURE AND

POLARIZATION

What observations of the cosmic microwave background actually measure is anisotropy

in the temperature of the radiation as a function of direction. It is natural to expand the

anisotropy on the sky in spherical harmonics:

�T (�; �)

T0
=

1X
l=0

lX
m=�l

aTlmYlm (�; �); (23)

where T0 = 2:728�K is the mean temperature of the CMB. Ination predicts that each aTlm

will be Gaussian distributed with mean


aTlm

�
= 0 and variance



aT�l0m0aTlm

�
= CT l�ll0�mm0 ; (24)

where angle brackets indicate an average over realizations. For Gaussian uctuations, the

set of CT l's completely characterizes the temperature anisotropy. The spectrum of the

CT l's is in turn dependent on cosmological parameters such as 
0, H0, 
B and so forth, so

that observation of CMB temperature anisotropy can serve as an exquisitely precise probe

of cosmological models. The parameters describing inationary models, PR and PT , are

conventionally re-expressed in terms of quadrupole amplitudes as normalization

Qrms�PS � T0

r
5CT2

4�
; (25)

and tensor/scalar ratio measured at the quadrupole [46]

r � Ctensor
T2

Cscalar
T2

= 0:86
PT
PR

= 13:7�: (26)

Normalization is a free parameter typically determined by the self-coupling of the inaton,

so that it does not serve to constrain models. The parameters of interest for testing ination

models are the tensor/scalar ratio r and the spectral index n. Since r = 13:7� and n =

1� 4�+ 2�, it is equivalent to specify the slow-roll parameters � and �.

Temperature anisotropy, however, is not the whole story. The cosmic microwave back-

ground is also expected to be polarized due to the presence of uctuations. Observation
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of polarization in the CMB will greatly increase the amount of information available for

use in constraining cosmological models. Polarization is a tensor quantity, which can be

decomposed on the celestial sphere into \electric-type", or scalar, and \magnetic-type", or

pseudoscalar modes. The symmetric, trace-free polarization tensor Pab can be expanded as

[15]

Pab
T0

=
1X
l=0

lX
m=�l

�
aElmY

E
(lm)ab (�; �) + aBlmY

B
(lm)ab (�; �)

�
; (27)

where the Y E;B
(lm)ab are electric- and magnetic-type tensor spherical harmonics, with parity

(�1)l and (�1)l+1, respectively. Unlike a temperature-only map, which is described by the

single multipole spectrum of CT
l 's, a temperature/polarization map is described by three

spectra

D��aTlm��2E � CT l;
D��aElm��2E � CEl;

D��aBlm��2E � CBl; (28)

and three correlation functions,



aT�lma

E
lm

� � CCl;


aT�lma

B
lm

� � C(TB)l;


aE�lma

B
lm

� � C(EB)l: (29)

Parity requires that the last two correlation functions vanish, C(TB)l = C(EB)l = 0, leav-

ing four spectra: temperature CT l, E-mode CEl, B-mode CBl, and the cross-correlation

CCl. Figure 1 shows the four spectra for a typical case. Since scalar density perturbations

have no \handedness," it is impossible for scalar modes to produce B-mode (pseudoscalar)

polarization. Only tensor uctuations (or foregrounds [47]) can produce a B-mode.

Measurement uncertainty in cosmological parameters is characterized by the Fisher in-

formation matrix �ij. (For a review, see Ref. [48].) Given a set of parameters f�ig, the
Fisher matrix is given by

�ij =
X
l

X
X;Y

@CXl

@�i
Cov�1

�
ĈXlĈY l

� @CY l

@�j
; (30)

whereX;Y = T;E;B;C and Cov�1
�
ĈXlĈYl

�
is the inverse of the covariance matrix between

the estimators ĈXl of the power spectra. Calculation of the Fisher matrix requires assuming
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a \true" set of parameters and numerically evaluating the CXl's and their derivatives relative

to that parameter choice. The covariance matrix for the parameters f�ig is just the inverse of
the Fisher matrix,

�
��1

�
ij
, and the expected error in the parameter �i is of order

p
(��1)ii.

The full set of parameters f�ig we allow to vary is:

1. tensor/scalar ratio r,

2. spectral index n,

3. normalization Qrms�PS,

4. baryon density 
B;

5. Hubble constant h � H0=(100 km sec�1Mpc�1),

6. reionization optical depth, �ri.

We take as a \�ducial" model COBE normalization [41] with 
B = 0:05 and h = 0:5.

The results are quite sensitive to the assumed reionization history of the universe, so we

separately consider the cases of no reionization (�ri = 0), and a reionization optical depth

of �ri = 0:05, corresponding to reionization at a redshift of about z � 13. Note that only

in the latter case do we marginalize over �ri. (This choice of parameters is consistent with

that used by Zaldarriaga et al. [6], and, in the case of no reionization, with Dodelson et al.

[7].) Fixed parameters are 
0 = 1 and 
� = 0, consistent with ination.y For the purpose

of constraining ination, we will be interested in error ellipses projected onto the r � n

plane, which corresponds simply to taking the appropriate 2� 2 submatrix of the full 5� 5

yIn fact, CMB measurements are more sensitive to geometry, that is 
0+
�, than how the energy

content of the universe is divided between matter and cosmological constant. The conclusions of

this paper are essentially unchanged for the currently popular choice of 
0 = 0:3, 
� = 0:7. The

signi�cant assumption is a at universe, 
0 +
� = 1.
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covariance matrix ��1. Assuming an approximately gaussian beam, the nonzero elements

of the covariance matrix Cov
�
ĈXlĈY l

�
are [3,13{15]

Cov
�
ĈT lĈT l

�
=

2

(2l + 1) fsky

�
CT l + w�1

T el
2�2

b

�2
;

Cov
�
ĈElĈEl

�
=

2

(2l + 1) fsky

�
CEl + w�1

P el
2�2

b

�2
;

Cov
�
ĈBlĈBl

�
=

2

(2l + 1) fsky

�
CBl + w�1

P el
2�2

b

�2
;

Cov
�
ĈClĈCl

�
=

2

(2l + 1) fsky

h
C2
Cl +

�
CT l + w�1

T el
2�2

b

��
CEl +w�1

P el
2�2

b

�i
;

Cov
�
ĈT lĈEl

�
=

2

(2l + 1) fsky
C2
Cl;

Cov
�
ĈT lĈCl

�
=

2

(2l + 1) fsky
CCl

�
CT l +w�1

T el
2�2

b

�
;

Cov
�
ĈElĈCl

�
=

2

(2l + 1) fsky
CCl

�
CEl + w�1

P el
2�2

b

�
: (31)

Here fsky is the fraction of the sky observed, and �b = �fwhm=
p
8 ln 2 is the gaussian

beamwidth, where �fwhm is the full width at half maximum. The inverse weights per unit

area w�1
T and w�1

P are determined by the detector resolution and sensitivity. For a noise per

pixel �Tpixel and solid angle per pixel 
pixel ' �2fwhm, the weight w
�1
T is

w�1
T =

�2pixel
pixel

T 2
0

: (32)

The polarization pixel noise �Ppixel is simply related to the temperature pixel noise �Tpixel,

since the number of photons available for the temperature measurement is twice that for the

polarization measurements:

�
�Ppixel

�2
= 2

�
�Tpixel

�2
(33)

and w�1
P = 2w�1

T . For MAP,z we take �fwhm = 180 with pixel noise �Tpixel = 20�K for the

combined signal from the three high-frequency channels at 40, 60, and 90GHz, or T 2
0w

�1
T =

zThe speci�cations for MAP used here di�er from the �gures of �Tpixel = 35�K and �fwhm =

180 used in [7], reecting newer �gures from the MAP team. See the MAP home page at

http://map.gsfc.nasa.gov.
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(0:10�K)2. Similarly, for Planck we assume �fwhm = 100 and a pixel noise of �Tpixel = 3�K,

or T 2
0w

�1
T = (0:009�K)2. In all cases we take the sky fraction to be fsky = 0:65.

It is particularly signi�cant that even with a zero noise measurement, �T = �P = 0, the

elements of the covariance matrix do not vanish. This means that there is an intrinsic error

associated with the measurement of a given multipole l of order

�
�CXl

CXl

�2

' Cov (CXl; CXl)

C2
Xl

� 2

(2l + 1) fsky
; (34)

known as cosmic variance. Cosmic variance is simply a �nite sample size e�ect coming from

the fact that we have only a single sky to measure, and is more severe at small l. It is

in overcoming cosmic variance that precision measurement of CMB polarization holds the

most dramatic promise. With temperature information only, the accuracy with which the

tensor/scalar ratio r can be measured is severely limited by cosmic variance, because both

scalars and tensors contribute to the temperature anisotropy. With temperature information

alone, r of less than about 0:1 cannot be detected, no matter how accurate the measurement.

When polarization is included, arbitrarily small r can in principle be detected, because only

the tensor uctuations contribute to the B-mode.

IV. A SURVEY OF INFLATION MODELS

CMB polarization can be used directly as a probe of the causal structure of the universe

[17]. Correlations in the polarization on scales larger than the horizon at last scattering can

only be produced by a period of inationary expansion. If observed, such correlations would

provide a \smoking gun" for ination, regardless of any model-dependent assumptions. In

this section we move from ination in general to ination in the particular and examine the

distinct predictions of di�erent models. Even with the restriction to single-�eld, slow-roll

ination, the number of models in the literature is large. It is convenient to de�ne a general

classi�cation scheme, or \zoology" for models of ination. We divide models into three

general types: large-�eld, small-�eld, and hybrid, with a fourth classi�cation, linear models,
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serving as a boundary between large- and small-�eld. A generic single-�eld potential can be

characterized by two independent mass scales: a \height" �4, corresponding to the vacuum

energy density during ination, and a \width" �, corresponding to the change in the �eld

value �� during ination. The height � is �xed by normalization, so the only remaining

free parameter is the width �. Di�erent classes of models are distinguished by the value

of the second derivative of the potential, or, equivalently, by the relationship between the

values of the slow-roll parameters � and �. These di�erent classes of models have readily

distinguishable consequences for the CMB. Figure 2 shows the r � n plane divided up into

regions representing the large-�eld, small-�eld and hybrid cases, described in detail below.

A. Large-�eld models: 0 < � � �

Large-�eld models are potentials typical of \chaotic" ination scenarios, in which the

scalar �eld is displaced from the minimum of the potential by an amount usually of order

the Planck mass. Such models are characterized by V 00 (�) > 0, and 0 < � � �. The

generic large-�eld potentials we consider are polynomial potentials V (�) = �4 (�=�)p, and

exponential potentials, V (�) = �4 exp (�=�).

For the case of an exponential potential, V (�) / exp (�=�), the slow-roll parameters are

constant

� = � = const: =
1

16�

�
MP l

�

�2

: (35)

Models with exponential potentials are often referred to as power-law ination, because the

scale factor depends on time as a power-law, a / t1=�. The tensor/scalar ratio r is simply

related to the spectral index as

r = 7 (1� n) : (36)

This result is often incorrectly generalized to all slow-roll models, but is in fact charac-

teristic only of power-law ination. Note that we have a one-parameter family of models,

parameterized by the scale �, so that all power-law models lie on a line in the r � n plane.
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For ination with a polynomial potential V (�) / �p, the slow-roll parameters are

� =
p

p+ 4N
=

�
p

p� 2

�
�; (37)

where N is the number of e-folds. Again we have r / 1� n,

r ' 7

�
p

p+ 2

�
(1� n) : (38)

so that tensor modes are large for signi�cantly tilted spectra. Unlike the case of the ex-

ponential potential, the scale � drops out of the expressions for the observables, and the

models are parameterized by the discrete exponent p.

B. Small-�eld models: � < 0 < �

Small-�eld models are the type of potentials that arise naturally from spontaneous sym-

metry breaking. The �eld starts from near an unstable equilibrium (taken to be at the

origin) and rolls down the potential to a stable minimum. Small-�eld models are character-

ized by V 00 (�) < 0 and � < 0 < �. The generic small-�eld potentials we consider are of the

form V (�) = �4 [1� (�=�)p], which can be viewed as a lowest-order Taylor expansion of an

arbitrary potential about the origin [49,50]. Assuming (�N=�)� 1, the slow-roll parameters

can be related as

� =
p

2 (p� 1)
j�j
�
�N
�

�p

; (39)

where

� ' �p (p� 1)

8�

�
MP l

�

�2��N
�

�p�2

: (40)

In general, then, �� j�j and the spectral index is approximately

n ' 1 + 2�: (41)

This leads to a simple relationship between the tensor/scalar ratio and the spectral index
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r = 7 (1� n)

�
p

2 (p� 1)

�
�N
�

�p�
; (42)

so that tensor modes are strongly suppressed in small-�eld models relative to the large-�eld

case. Because of the exponent p � 2 in the expression for � (40), the cases p = 2 and

p > 2 have very di�erent behavior. For p = 2, taking ination to end at �E � �, it is

straightforward to compute �N :�
�N
�

�
' exp

�
�1

2
� 1

2
N (1� n)

�
: (43)

We then have the desired expression for r as a function of n:

r = 7(1� n) exp [�1�N (1� n)] : (44)

For p > 2, the �eld value �N is�
�N
�

�p�2

=
8�

Np (p� 2)

�
�

MP l

�2

; (45)

so that

� ' � 1

N

�
p� 1

p� 2

�
: (46)

The scalar spectral index is then

n ' 1� 2

N

�
p� 1

p� 2

�
; (47)

which is independent of (�=MP l), so that �� � � � MP l is consistent with a nearly scale-

invariant scalar uctuation spectrum [49,50]. We can make (�=MP l) as small as we wish, so

that the tensor/scalar ratio

r /
�

�

MP l

�2p=(p�2)

(48)

can be arbitrarily small for p > 2. In keeping with the physical motivation for these models,

we take � < MP l, so that there is an upper bound on r of

r < 7
p

N (p� 2)

�
8�

Np (p� 2)

�p=(p�2)

: (49)

It is particularly interesting to consider the question of whether measurement of the polar-

ization will make it possible to distinguish between p = 2 and p > 2 small-�eld models. This

is discussed in Section V.
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C. Hybrid models: 0 < � < �

The hybrid scenario frequently appears in models which incorporate ination into su-

persymmetry. In a hybrid ination scenario, the scalar �eld responsible for ination evolves

toward a minimum with nonzero vacuum energy. The end of ination arises as a result of

instability in a second �eld. Hybrid models are characterized by V 00 (�) > 0 and 0 < � < �.

We consider generic potentials for hybrid ination of the form V (�) = �4 [1 + (�=�)p] : The

�eld value at the end of ination (and hence �N) is determined by some other physics, and

we treat (�N=�) in this case as a freely adjustable parameter. The slow-roll parameters are

then related as

�

�
=

2 (p� 1)

p

�
�N
�

��p �
1 +

p� 2

2 (p� 1)

�
�N
�

�p�

�!

8>>>><
>>>>:

p� 2
p for �N=�� 1

2 (p� 1)
p

�
�
�N

�p
for �N=�� 1

: (50)

When (�N=�) � 1, we recover the result for the large-�eld case (37). When (�N=�) � 1,

we obtain a result analogous to that for small-�eld models (39), with the di�erence that

here � is positive. The distinguishing feature of many hybrid models is a blue scalar spectral

index, n > 1. This corresponds to the case � > 2�. Recalling that n = 1 � 4� + 2�, we see

that hybrid models can also in principle have a red spectrum, n < 1. Because of the extra

freedom to choose the �eld value at the end of ination, and hence (�N=�), hybrid models

�ll a broad region in the r � n plane (Fig. 2). There is, however, no overlap in the r � n

plane between hybrid ination and other models.

D. Linear models: � = ��

Linear models, V (�) / �, live on the boundary between large-�eld and small-�eld mod-

els, with V 00 (�) = 0 and � = ��. We then have the relation

r =
7

3
(1� n) : (51)
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This enumeration of models is certainly not exhaustive. There are a number of single-

�eld models that do not �t well into this scheme, for example logarithmic potentials [51]

V (�) / ln (�) typical of sypersymmetry. Another example is potentials with negative

powers of the scalar �eld V (�) / ��p used in intermediate ination [52] and dynamical

supersymmetric ination [53,54]. However, the three classes categorized by the relationship

between the slow-roll parameters as 0 < � � � (large-�eld), � < 0 < � (small-�eld), and

0 < � < � (hybrid), cover the entire r � n plane and are in that sense complete.

V. RESULTS AND CONCLUSIONS

The goal is to answer two questions: �rst, for a model with easily detectable tensor

modes, how much does measurement of CMB polarization increase the precision of the mea-

surement in the r � n parameter plane? Second, what is the smallest r detectable under

a reasonable set of assumptions? The ability to detect an r of about 0:01 would make it

possible to observationally distinguish between small-�eld models with quadratic potentials

and models with higher powers of �. We calculate the Cl spectra using Seljak and Zaldar-

riaga's CMBFAST code [20], and plot the expected errors for MAP and Planck on the r � n

plane, along with the predictions of the generic ination models discussed in Section IV.

The size of the expected errors depend, of course, on the underlying model assumed. In

all cases we take COBE normalization, h = 0:5, and 
b = 0:05. We choose two models for

study. The �rst model, motivated by consideration of large-scale structure data [21], is on

the power-law ination curve with n = 0:9 and r = 0:7. Figure 3 shows MAP 2 � � error

ellipses with and without polarization in the r� n plane, assuming no reionization. Note in

particular that the error ellipses with and without polarization information are identical in

size { observing polarization does not help in this case. Figure 4 shows the equivalent result

for Planck. In this case, polarization increases the precision of the measurement. Figures

5 and 6 show the errors for MAP and Planck with an assumed reionization optical depth

of �ri = 0:05, corresponding to a reionization redshift zri ' 13. In this case the errors on
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the temperature-only measurement are much larger than in the case where we assumed no

reionization, but the errors when polarization information is included are practically un-

changed. The conclusion to be drawn is that measuring CMB polarization eliminates the

degeneracy between reionization and tensor modes present in temperature-only measure-

ments, a signi�cant advantage. This can be seen more clearly by plotting the error ellipse

in the �ri � r parameter plane (Fig. 7). With a temperature-only measurement, there is

signi�cant degeneracy between �ri and r, but the degeneracy disappears completely when

polarization is included.

The second model is in the region predicted by a small-�eld model with V (�) / 1 �
(�=�)2, with r = 0:007 and n = 0:95. Figure 8 again shows the ination models plotted

on the r � n plane, this time with r on a logarithmic scale. Error ellipses are shown

for the cosmic variance limit of a temperature-only measurement (that is, for a perfect

temperature-only observation, assuming a resolution of 100), for Planck (with polarization),

and for a hypothetical all-sky measurement with the same 100 resolution as Planck, but a

factor of three higher sensitivity, �pix = 1�K. The reionization optical depth is assumed

to be �ri = 0.05. We see that while Planck with polarization does better than cosmic

variance, it still is not sensitive enough to detect the tensor mode in this case. However, a

small improvement in sensitivity gives a big payo�: the ability to distinguish experimentally

between p = 2 and p > 2 small-�eld ination models, something which is impossible using

temperature information alone. These results are in good agreement with the conclusions

of Kamionkowski and Kosowsky [18].

While models of ination make the generic predictions of a at universe and nearly scale-

invariant spectrum of scalar uctuations, di�erent models make quite distinct predictions

within that general framework. A previous paper [7] considered measurements of the CMB

temperature uctuations to show that MAP and Planck would be capable of discriminating,

at least roughly, between di�erent classes of ination models. While such information can't

\prove" a model correct, it can make it possible to eliminate models as inconsistent with
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observation. In this paper, we have extended that analysis to include CMB polarization

as well as temperature, with two main conclusions. First, reionization can signi�cantly

degrade the accuracy of temperature-only measurements in the parameter space of relevance

for discriminating among ination models. However, the inclusion of polarization largely

eliminates this problem. Second, very small tensor to scalar ratios can be probed with

polarization, given that there is no fundamental lower limit from cosmic variance. While

planned satellite experiments are not capable of detecting a small enough r to distinguish

between small-�eld models with a quadratic potential and those dominated by higher powers

of �, a factor of three improvement in sensitivity over Planck would make such discrimination

possible. It is also conceivable that ground-based experiments might trade decreased sky

coverage for increased sensitivity with the same overall result. CMB polarization opens the

door to precision tests of ination models.
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FIGURES

10 100 1000

FIG. 1. Typical temperature/polarization spectra for the �ducial case n = 0:9, r = 0:7, �ri = 0:05.
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FIG. 2. The parameter space divided into regions for small-�eld, large-�eld and hybrid models.

The linear case is the dividing line between large- and small-�eld.
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FIG. 3. 2 � � error ellipses for MAP (no reionization), with n = 0:9 and r = 0:7. The T only

and T+P ellipses overlap almost exactly in this case.
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FIG. 4. Error ellipses for Planck (no reionization), with n = 0:9 and r = 0:7. In this case,

polarization results in a noticeable increase in sensitivity.
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FIG. 5. Error ellipses for MAP (�ri = 0:05). With reionization, the T-only error is much larger

than for the case with no reionization, but the T+P case is mostly una�ected.
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FIG. 6. Error ellipses for Planck (�ri = 0:05). As with MAP, the temperature-only measurement

is degraded by reionization, but not the errors including polarization information.
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FIG. 7. Error ellipses in the �ri � r plane. The parameter degeneracy present in the T-only

measurement is removed completely by including polarization information, a signi�cant advantage.
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FIG. 8. The r� n plane on a logarithmic scale, highlighting the predictions of small-�eld models.

Error ellipses are for cosmic variance (�Tpix = 0), Planck (with polarization), and a hypothetical

experiment with the same 100 angular resolution as Planck but a factor of three higher sensitivity.

This is su�cient to detect r � 0:01, which makes is possible to distinguish between p = 2 and p > 2

small-�eld models.
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